Metformin inhibits β-catenin phosphorylation on Ser-552 through an AMPK/PI3K/Akt pathway in colorectal cancer cells

Gastón Amablea,b, Eduardo Martínez-Leóna,b, María Elisa Piccoa,b, Nicolas Di Serviaa,c,d, Carlos Davioa,c,d, Enrique Rozengurt, Osvaldo Reyab,*

Received 11 March 2019; Received in revised form 6 May 2019; Accepted 8 May 2019

ARTICLE INFO

Keywords:
Metformin
β-Catenin
Colorectal cancer
AMPK
PI3K/Akt

ABSTRACT

Several epidemiologic studies have revealed strong inverse associations between metformin use and risk of colorectal cancer development. Nevertheless, the underlying mechanisms are still uncertain. The Wnt/β-catenin pathway, which plays a central role in intestinal homeostasis and sporadic colorectal cancer development, is regulated by phosphorylation cascades that are dependent and independent of Wnt. Here we report that a non-canonical Ser552 phosphorylation in β-catenin, which promotes its nuclear accumulation and transcriptional activity, is blocked by metformin via AMPK-mediated PI3K/Akt signaling inhibition.

1. Introduction

Despite advances in early detection, surgery and chemotherapy, colorectal cancer (CRC) remains the second leading cause of cancer-related mortality in the U.S. and other developed countries. Novel targets and agents for therapy and chemoprevention are urgently needed. They most likely will arise from a clear understanding of the signaling pathways involved and the consequent repurposing of currently used drugs.

Considerable evidence has linked metabolic syndrome, obesity and type 2 diabetes mellitus (T2DM), conditions characterized by peripheral insulin resistance and hyperinsulinemia, with an increase in the incidence of multiple malignancies, including CRC (Gonzalez et al., 2017). Consequently, antidiabetic therapies have emerged as possible new strategies in the prevention and treatment of different types of cancer such as CRC (Chang et al., 2018; Gonzalez et al., 2017; Ikhsal and Ahmad, 2017; Jackson and Garcia-Albeniz, 2018; Kil-Drori et al., 2017; Kobiela et al., 2018). In epidemiological studies, the administration of the biguanide metformin, the most commonly prescribed anti-diabetic agent (He and Wondisford, 2015; Rena et al., 2013), has been associated with lower CRC incidence and mortality in T2DM patients (Zhang et al., 2011). Furthermore, a recent double-blind placebo-controlled, randomized trial that showed that low-dose metformin significantly decreased colorectal adenoma recurrence (Higurashi et al., 2016). Despite its potential clinical importance, the cellular and molecular mechanism(s) by which metformin acts as a preventive agent in CRC and other malignancies remains poorly understood (Li et al., 2018).

It is recognized that aberrant activation of β-catenin signaling plays a central role in the majority of sporadic colorectal tumors (Clevers, 2006; Clevers and Nusse, 2012; McDonald et al., 2006). In most cases, the Wnt/β-catenin pathway undergoes an early deregulation that leads to the nuclear accumulation of β-catenin and the constitutive activation of its target genes (Cheah, 2009; Huels et al., 2015; Kinzler and Vogelstein, 1996; Krausova and Korinek, 2014; Polakis, 2012; Sansom et al., 2004; Walther et al., 2009). Phosphorylation cascades that are dependent and independent of Wnt signaling play a critical role in the control of β-catenin stability, intracellular distribution and transcriptional activity (Clevers, 2006; Fang et al., 2007; He et al., 2007; Taurin et al., 2006, 2008; Vermeulen et al., 2010). For example, the canonical sequential phosphorylation of β-catenin in its N-terminal domain targets β-catenin for proteosomal degradation (Clevers and Nusse, 2012) whereas its non-canonical phosphorylation at Ser552 and Ser675 promotes its nuclear translocation and transcriptional activity (Fang et al., 2007; Rey et al., 2012; Taurin et al., 2006). We hypothesized that phosphorylation of β-catenin at Ser552 in response to insulin and IGF-1

⁎ Corresponding author at: Hospital de Clínicas “José de San Martín”, INIGEM-CONICET/UBA, Avenida Córdoba 2351, 4’ Piso, Sala 5, 1120, Caba, Argentina.
E-mail address: osrey@ucla.edu (O. Rey).

https://doi.org/10.1016/j.biocel.2019.05.004
Received 11 March 2019; Received in revised form 6 May 2019; Accepted 8 May 2019
Available online 10 May 2019
1357-2725/ © 2019 Elsevier Ltd. All rights reserved.
provides a plausible mechanism by which T2DM and metabolic syndrome potentiates the promotion of CRC. As a corollary of this hypothesis, we considered that metformin targets this pathway, thus inhibiting β-catenin signaling and progression of CRC. In an effort to test these hypotheses, we examined whether metformin affects β-catenin phosphorylation in human colorectal adenocarcinoma-derived cells stimulated with insulin or IGF-1. Our results show that metformin inhibits β-catenin Ser\(^{89}\) phosphorylation by a mechanism that involves 5′ AMP-activated protein kinase (AMPK)-mediated phosphoinositide 3-kinase (PI3K)/Akt signaling inhibition.

2. Materials and methods

2.1. Cell culture and transfections

The human colorectal adenocarcinoma-derived cell lines SW-480 and HT-29 were obtained from the American Type Culture Collection (Manassas, Virginia, USA) and maintained as recommended. Transfections were performed with Lipofectamine Plus (Thermo Fisher Scientific, Waltham, Massachusetts, USA) as previously described (Rey et al., 2001). Dulbecco’s Modified Eagle’s medium (DMEM) containing physiological (5.0 mM) concentration of glucose was employed for all the experimental procedures.

2.2. Western blot analysis

The collected cells were directly solubilized by boiling in 2X Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) sample buffer and resolved in SDS-PAGE, transferred to Immobilon-P membranes (Millipore Corp., Burlington, Massachusetts, USA) and processed for Western blot as previously described (Rey et al., 2001) using horseradish peroxidase-conjugated IgGs as secondary antibody and enhanced chemiluminescence ECL reagent (GE Healthcare, Little Chalfont, Buckinghamshire, UK). Images were obtained with a GeneTools software (Syngene, Cambridge, UK). The Western blots results displayed in the figures are representative of at least three independent experiments.

2.3. Immunocytochemistry

Cell cultures prepared for immunocytochemistry as previously described (Rey et al., 2001) were examined with a Nikon Eclipse Ti-E microscope (Nikon Instruments Inc., Tokyo, Japan) and fluorescence images captured with a Genescope XRQ chemiluminescence imaging system (Syngene, Chalfont, Buckinghamshire, UK). These images were obtained with a Genescope XRQ chemiluminescence imaging system (Syngene, Cambridge, UK) and the intensity of the detected bands quantified with the GeneTools software (Syngene, Cambridge, UK). The Western blots results displayed in the figures are representative of at least three independent experiments.

2.4. Live cell imaging

To acquire time-lapse images of living cells transiently expressing the PtdIns(3,4,5)\(^3\)P\(_3\) sensor pcdNA3-Akt-PH-GFP (Kwon et al., 2007), which was obtained from Addgene, Watertown, Massachusetts, USA (Cat. #18836), we employed a Delta T Culture Dish System (Biotechs, Butler, Pennsylvania, USA) mounted on a Nikon stage adapter (Biotechs, Butler, Philadelphia, USA) connected to a Delta T temperature controller (Biotechs, Butler, Philadelphia, USA) in order to maintain the cultures at 37 °C. Six hours after transfection, the supernatants were removed and the cultures were further incubated for 16 h in DMEM plus 10% fetal bovine serum (FBS). Subsequently, the cultures were incubated in DMEM supplemented with 2.0 mM or 0.5 mM metformin for 16 h before stimulation. Alternatively, after the 16 h incubation with complete DMEM the transfected cultures were further incubated in DMEM without metformin during 14 h and then for 4 h with the AMPK allosteric activator ZLN 024 (80 μM) or for 30 min with Wortmannin (100 nM) before stimulation. Stimulation was performed by perfusing the cultures with Hanks Balanced Salt Solution (138 mM NaCl, 4 mM NaHCO\(_3\), 0.3 mM Na\(_2\)HPO\(_4\), 5 mM KCL, 0.3 mM KH\(_2\)PO\(_4\), 1.5 mM CaCl\(_2\), 0.5 mM MgCl\(_2\), 0.4 mM MgSO\(_4\), 5.6 mM D-glucose and 20 mM HEPES; pH: 7.4) supplemented with 10 ng/ml of insulin or 10 ng/ml of IGF-1 without metformin plus ZLN 024 (80 μM) or Wortmannin (100 nM) or with metformin (2 mM or 0.5 mM). The cells were visualized with a Nikon Eclipse Ti-E motorized microscope with integrated Perfect Focus System (Nikon Instruments Inc., Tokyo, Japan) and images captured at 10 s intervals during 20 min starting 2.5 min before IGF-1 stimulation with an Andor Neo 5.5 sCMOS camera (Oxford Instruments, Oxfordshire, UK) driven by NIS-Elements AR v 4.30.01 software (Nikon Instruments Inc., Tokyo, Japan). Analysis of PH-GFP translocation of equivalent regions of the plasma membrane was performed with NIS-Elements AR v 4.30.01 software (Nikon Instruments Inc., Tokyo, Japan). No less than thirty individual cells were examined per condition in three independent experiments. The cells displayed in the appropriate figures are representative of 90% of the transfected cells.

2.5. Materials

Antibodies were obtained from: Thermo Fisher Scientific (Waltham, Massachusetts, USA): anti-Akt, anti-phospho Akt Ser\(^{473}\), anti-phospho GSK3β Ser\(^{β}\), Abcam Inc: anti-α-tubulin, Alexa Fluor 488 conjugated anti-mouse IgGs; Cell Signaling Technology (Danvers, Massachusetts, USA): anti-phospho β-catenin, Ser\(^{552}\)/Thr\(^{41}\), Ser\(^{552}\), Thr\(^{41}\)/Ser\(^{552}\), Ser\(^{575}\); anti-acetyl CoA carboxylase, anti-phospho acetyl CoA carboxylase Ser\(^{29}\); GE Healthcare (Little Chalfont, Buckinghamshire, UK): horseradish peroxidase-conjugated anti-rabbit or anti-mouse IgGs. IGF-1, insulin and metformin were obtained from Sigma-Aldrich (St. Louis, Missouri, USA). The PI3K inhibitor Wortmannin, the Akt inhibitor GSK 690693, and the AMPK allosteric activator ZLN 024 were obtained from Tocris Bioscience (Bristol, UK). All other reagents were of the highest grade commercially available.

3. Results and discussion

3.1. Metformin inhibits β-catenin Ser\(^{552}\) phosphorylation induced by insulin and IGF-1 in human colorectal cell lines

The phosphorylation of β-catenin on Ser\(^{552}\) has been linked to non-canonical positive regulation of β-catenin intracellular distribution and transcriptional activity (Fang et al., 2007; Rey et al., 2012; Taurin et al., 2006). Consequently, we initially determined whether insulin and IGF-1, which promote CRC development (Aleman et al., 2014; Cohen and LeRoith, 2012; Kant and Hull, 2011), have any impact on phosphorylation of β-catenin on Ser\(^{552}\) in CRC-derived cells. Stimulation of human SW-480 CRC cells with either insulin or IGF-1 (10 ng/ml) for 15 min induced a rapid and striking (15-20-fold) increase in the phosphorylation β-catenin at Ser\(^{552}\) (Fig. 1A). In contrast, we did not detect any change in the phosphorylation of β-catenin at Ser\(^{43}\)/Ser\(^{57}\)/Thr\(^{41}\), Thr\(^{41}\)/Ser\(^{35}\) or Ser\(^{575}\) in response to insulin, IGF-1 or metformin (data not shown). The salient feature of the results shown in Fig. 1A is that prior exposure of SW-480 cells to metformin suppressed the increase in β-catenin phosphorylation on Ser\(^{552}\) induced by insulin or IGF-1.

To substantiate these results, we examined the effects of insulin and IGF-1 on β-catenin phosphorylation on Ser\(^{552}\) with or without prior exposure to metformin in HT-29 cells, a CRC-derived cell line with a genetic background different from SW-480 cells (Ahmed et al., 2013; Gayet et al., 2001). As shown in Fig. 1B, stimulation with insulin or IGF-1 also promoted rapid phosphorylation of β-catenin at Ser\(^{552}\) in HT-29 cells, an effect markedly inhibited by prior exposure to metformin. These findings show, for the first time, that exposure to metformin inhibits β-catenin phosphorylation on Ser\(^{552}\) induced by insulin or IGF-1.
3.2. Metformin promotes the plasma membrane translocation of β-catenin in human colorectal cell lines

Because metformin inhibits the phosphorylation of Ser\(^{552}\) in β-catenin, a post-translational modification that promotes its nuclear accumulation and transcriptional activity (Fang et al., 2007; Rey et al., 2012), we examined whether metformin treatment also affected its intracellular distribution. As shown in Fig. 2, whereas β-catenin was present throughout the untreated cells, insulin and IGF-1 enhanced its nuclear localization. In contrast, metformin treatment promoted a redistribution of β-catenin characterized by its translocation to the plasma membrane and by a significant reduction in its cytosolic and nuclear localization.

3.3. Metformin inhibits β-catenin phosphorylation on Ser\(^{552}\) via Akt

We next examined the mechanism(s) by which metformin inhibits β-catenin phosphorylation on Ser\(^{552}\). This residue is a consensus site for Akt (Fang et al., 2007; Rey et al., 2012), though it can also be phosphorylated by other serine/threonine protein kinases (Verheyen and Gottardi, 2010). As shown in Fig. 3A, insulin and IGF-1 promoted a sustained and dose-dependent increase in the phosphorylation of Akt on Ser\(^{473}\) in SW-480 or HT-29 cells. Crucially, exposure to metformin completely abrogated Akt phosphorylation at Ser\(^{473}\) induced by insulin or IGF-1 (Fig. 3B), implying that metformin prevents Akt activation in response to insulin and IGF-1 and thereby inhibits β-catenin phosphorylation on Ser\(^{552}\).

Akt activation is a multi-step process that involves its plasma membrane recruitment via the binding of its pleckstrin homology (PH) domain to phosphatidylinositol 3,4,5-triphosphate (PtdIns (3,4,5)P\(_3\)) produced by PI3K at the inner leaflet of the plasma membrane (James et al., 1996; Naguib, 2016). In order to corroborate that Akt
phosphorylates β-catenin at Ser552, the cultures were treated with the PI3K inhibitor Wortmannin (Arcaro and Wymann, 1993) or the Akt inhibitor GSK 690693 (Heerding et al., 2008) and the activation of Akt and phosphorylation of β-catenin at Ser552 in response to IGF-1 was assessed. As Fig. 3C shows, both inhibitors blocked the phosphorylation of β-catenin on Ser552 and Akt activation, monitored by the inhibition of Ser9 phosphorylation in GSK3β, a well-characterized Akt substrate (Beurel et al., 2015; Cohen and Frame, 2001; Cross et al., 1995). Collectively, the results support the conclusion that Akt phosphorylates β-catenin at Ser552. Similar results were obtained when the cells were stimulated with insulin (data not shown).

3.4. Metformin-stimulated AMPK signaling inhibits the PI3K/Akt pathway and β-catenin Ser552 phosphorylation

Our next task was to elucidate the role of AMPK in the mechanism by which metformin inhibits Akt and β-catenin phosphorylation. Initially, we examined which concentrations of metformin induce AMPK activation in human colorectal adenocarcinoma-derived cells and next whether direct AMPK activation interferes with Akt phosphorylation. As shown in Fig. 4A, metformin concentrations ranging from 0.1 to 5.0 mM promoted the activation of AMPK as revealed by the phosphorylation of acetyl CoA carboxylase Ser295, a well-established AMPK substrate (Hardie and Pan, 2002). These results indicate that metformin induced AMPK activation at the concentrations that inhibit Akt and β-catenin phosphorylation. Importantly, treatment of the...
Fig. 4. Metformin promotes the activation of AMPK (A). SW-480 cells incubated for 16 with the indicated concentration of metformin were lysed and analyzed by Western blot using rabbit antibodies against acetyl CoA carboxylase phospho-Ser79 (pACC Ser79) and acetyl CoA carboxylase (ACC). Signals were detected and quantified as in Fig. 1 B. Bars represent the mean ± SE (n = 3) fold increase in acetyl CoA carboxylase Ser79 phosphorylation normalized by total acetyl CoA carboxylase. The statistical analysis was performed using the Student’s t-test (*** < 0.001). AMPK activation inhibits Akt and β-catenin phosphorylation (B). SW-480 cells preincubated for 4 h with the AMPK allosteric activator ZLN 024 (80 μM) and challenged for 15 min with 10 ng/ml IGF-1 were examined by Western blot using rabbit antibodies against β-catenin phospho-Ser552 and GSK3β phospho-Ser9. Signals were detected and quantified as in Fig. 1 B. Bars represent the mean ± SE (n = 3) fold increase in β-catenin Ser552 phosphorylation and GSK3β Ser9 phosphorylation normalized by α-tubulin.

In order to further understand the mechanism mediating metformin-mediated Akt inhibition, we determined whether metformin interfered with the plasma membrane translocation of Akt, a necessary step in its activation (Manning and Toker, 2017). We examined by real-time imaging the localization of a reporter protein consisting of the Akt-derived PH domain fused to green fluorescent protein (Akt-PH-GFP) (Kwon et al., 2007). As illustrated in Fig. 5, the PH-GFP expressed in cultures with the novel AMPK allosteric activator ZLN 024 (Zhang et al., 2013) blocked the phosphorylation of β-catenin Ser552 and of Akt at Ser473 (Fig. 4B).

4. Concluding remarks

It is well established that over 90% of CRCs are promoted by activation of the Wnt/β-catenin pathway leading to robust β-catenin nuclear accumulation (Walther et al., 2009). Consequently, we hypothesized that the chemopreventive properties of the antidiabetic agent metformin are mediated, at least in part, by direct interference with β-catenin signaling. In support of this hypothesis, our results indicate that metformin inhibited β-catenin Ser552 phosphorylation and promoted its plasma membrane localization by a mechanism mediated by the activation of AMPK leading to suppression of PI3K/Akt induced by insulin or IGF-1 in colorectal cancer cells, including SW-480 and HT-29 cells. Previous studies in other cancer cells demonstrated that AMPK inhibits mTORC1 activation through stimulation of TSC2 function, leading to accumulation of Rheb-GDP (the inactive form) and by direct phosphorylation of Rapor, leading to dissociation of the mTORC1 complex (Rozengurt et al., 2014). In contrast, there is little information concerning the impact of metformin/AMPK on mTORC2, the molecular complex responsible for the phosphorylation of Akt at Ser473. Our results showed a marked sensitivity of CRC cells to AMPK-mediated inhibition of PI3K/Akt revealed an exploitable vulnerability in CRC cells that can explain the mechanisms by which metformin acts as a chemopreventive agent in bowel cancer.

Several studies exploring the mechanism of action of metformin in cultured cells reported many effects including respiratory chain complex 1 inhibition, Akt phosphorylation inhibition, ATP depletion, AMPK activation and Wnt/β-catenin signaling inhibition (El-Mir et al., 2000; Isoda et al., 2006; King et al., 2006; Melnik et al., 2018; Park et al., 2019; Takatani et al., 2011). However, these results were obtained employing metformin at concentrations 100-fold higher than those achieved in target tissues in diabetic patients receiving therapeutic recommended doses. Consequently, the physiological relevance of the conclusion drawn from these in vitro studies has been questioned (He and Wondisford, 2015). Our results are not subject to this important objection because in contrast to other tissues, metformin accumulates in the gut following its oral administration (Bailey et al., 2008; Paleari et al., 2018). Our results in CRC cells, obtained with metformin at concentrations compatible with those detected in human and rodent
intestines after oral administration of therapeutic levels of metformin (Bailey et al., 2008; Wilcock and Bailey, 1994), imply that metformin targets CRC development and progression via, at least in part, direct AMPK-mediated PI3K/Akt signaling inhibition leading to abrogation of non-canonical β-catenin-mediated signaling.

Acknowledgements

This work was supported by FONCYT, Secretaría de Ciencia Tecnología e Innovación Productiva, Argentina, PICT 2012-0875 and PICT 2013-0891 to O. R. and PICT 2015-2996 to C. D. E. R. is supported by NIH P30DK041301 and VA I01BX003801. G. A. and E. M. L. are recipients of fellowship awards from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.biocel.2019.05.004.

References

